5.4 Solving Rational Equations

A Rational Equations	Ex 1. Solve the following rational equation:
 To solve a rational equation: State restrictions Multiply by the LCD (Least Common Denominator) Solve the polynomial equation (algebraically or by using technology) Verify restrictions Verify your solutions by substitution 	$\frac{x}{x-2} - \frac{2}{x+3} = \frac{10}{x^2 + x - 6}$
B Cross Multiplication A rational equation of the form: $\frac{P(x)}{Q(x)} = \frac{R(x)}{S(x)}$, where P(x), $Q(x)$, $R(x)$, and $S(x)$ are polynomial functions, may be solve by cross-multiplication: $\frac{P(x)}{Q(x)} = \frac{R(x)}{S(x)} \iff P(x)S(x) = Q(x)R(x)$ Note. Do not forget to state and verify restrictions.	Ex 2. Use cross-multiplication to solve: $\frac{x-1}{2x+3} = \frac{x+2}{3x-2}$
C Shortcut A rational equation of the form $\frac{P(x)}{Q(x)} = 0$ is equivalent (if restrictions are satisfied) to the equation: P(x) = 0 Note. Do not forget to state and verify restrictions.	Ex 3. Solve for x. $\frac{x^2 + x - 2}{x^2 - 1} = 0$

D No solution	Ex 4. Solve for <i>x</i> .
A rational equation of the form: $\frac{constant}{P(x)} = 0$	$\frac{2}{2x-1} + \frac{1}{1-x} = 0$
does not have any solution.	
Ex 5. Solve for <i>x</i> .	Ex 6. Solve for x.
a) $1+x+\frac{4}{x}=\frac{9}{x-1}$	a) $\frac{\frac{x}{x-1} + \frac{x}{x+1}}{\frac{3}{x+1} - \frac{2}{x-1}} = \frac{3x+2}{x-5}$
b) $\frac{2x^3 - 1}{4 - x^2} = \frac{x}{x + 2}$	b) $\frac{ x-1 }{x+1} + \frac{x+2}{ x-2 } = 3$

Reading: Nelson Textbook, Pages 278-285 Homework: Nelson Textbook, Page 285: #1, 2a, 3d, 5c, 6c, 7f, 13, 15