5.4 Solving Rational Equations

A Rational Equations

To solve a rational equation:

- State restrictions
- Multiply by the LCD (Least Common Denominator)
- Solve the polynomial equation (algebraically or by using technology)
- Verify restrictions
- Verify your solutions by substitution

B Cross Multiplication

A rational equation of the form: $\frac{P(x)}{Q(x)}=\frac{R(x)}{S(x)}$, where $P(x), Q(x), R(x)$, and $S(x)$ are polynomial functions, may be solve by cross-multiplication:

$$
\frac{P(x)}{Q(x)}=\frac{R(x)}{S(x)} \Leftrightarrow P(x) S(x)=Q(x) R(x)
$$

Note. Do not forget to state and verify restrictions.

Note. Do not forget to state and verify restrictions.

D
C Shortcut
A rational equation of the form $\frac{P(x)}{Q(x)}=0$ is equivalent

D
C Shortcut
A rational equation of the form $\frac{P(x)}{Q(x)}=0$ is equivalent

$$
P(x)=0
$$

Ex 3. Solve for x.
$\frac{x^{2}+x-2}{x^{2}-1}=0$

Ex 1. Solve the following rational equation:
$\frac{x}{x-2}-\frac{2}{x+3}=\frac{10}{x^{2}+x-6}$

Ex 2. Use cross-multiplication to solve:
$\frac{x-1}{2 x+3}=\frac{x+2}{3 x-2}$

D No solution A rational equation of the form: $\frac{\text { constant }}{P(x)}=0$ does not have any solution.	Ex 4. Solve for x. $\frac{2}{2 x-1}+\frac{1}{1-x}=0$
Ex 5. Solve for x. a) $1+x+\frac{4}{x}=\frac{9}{x-1}$ b) $\frac{2 x^{3}-1}{4-x^{2}}=\frac{x}{x+2}$	Ex 6. Solve for x. a) $\frac{\frac{x}{x-1}+\frac{x}{x+1}}{\frac{3}{x+1}-\frac{2}{x-1}}=\frac{3 x+2}{x-5}$ b) $\frac{\|x-1\|}{x+1}+\frac{x+2}{\|x-2\|}=3$

Reading: Nelson Textbook, Pages 278-285
Homework: Nelson Textbook, Page 285: \#1, 2a, 3d, 5c, 6c, 7f, 13, 15

